深圳市博雅网络科技发展有限公司
游戏版号 , ISBN , 游戏备案 , 游戏文网文证 , ICP证
AI医生Zui难获取的是真实的问诊数据

如何让问诊AI少出错甚至不出错,是所有研发团队要解决的首要难题。

大语言模型的本质是通过统计分析预测对话中可能的下一个词,存在生成不准确或误导信息的可能性,但在严格要求准确性的医疗领域,AI的错误也意味着患者将承受风险。

2021年,密歇根大学医学院研究人员发现,由美国电子健康记录公司Epic Systems 研发的败血症AI预警系统没能识别出67%的败血症住院患者,只识别出7%被医生遗漏的败血症患者。Epic公司称,漏检与系统阈值有关,需要设置一个平衡患者假阴性与假阳性的警报阈值。

高质量数据是保证准确性的基础。医疗大语言模型会被额外“投喂”医学书籍、临床诊疗指南、医学论文等专业知识。其中Zui重要、也Zui难获取的是youxiu的真实问诊数据,既包括dingji专家对该疾病的诊断记录,也包括患者身体特征、检测数据、家族史、环境信息等多维度的信息,同时,还需要覆盖各年龄层、性别、地域的患者。

多位受访专家和从业者表示,已有问诊数据尚不能完全满足研发需求。国家远程医疗与互联网医学中心医学人工智能专家委员会主任委员、呼吸病学专家刘国梁告诉《》,即使能收集到目前医院的临床数据,其质量也未达到能够用于AI训练的水平,需要专门去生产符合AI训练标准的临床问诊数据。

更多的临床经验可能未被记录成文本。“特别是疑难病领域,很多知识是在医生脑子里,甚至医院里面可能也没有,都是口口相传。”曾柏毅说。

王仕锐介绍说,医联共使用三类真实问诊数据,包括公开数据、医联独有的问诊数据,以及通过搭建专门的数据平台收集的数据。对于第三类数据,医联从协会、医院、专家处采集,“这一过程好像将石油从地底勘察并Zui终加工运输到油箱,中间有漫长且复杂的工序。”

前述高校学者强调,数据质量对研究非常重要,但前提是要保障数据安全。对数据的采集、筛选必须建立在保护数据安全的基础上,个人信息脱敏,保护患者隐私是首要步骤。医联、春雨医生和商汤均表示对数据进行了脱敏处理,并在使用前取得了患者同意。

除了数据,模型设计也能提升医疗AI的准确率。田丰说,商汤成立了一支近百人的医学专家团队,参与数据标注、模型训练及测试,保证AI能够完成多轮问诊、不回答患者非医疗问题等。商汤还训练了一套“智能评判系统”,对大语言模型输出的答案进行评判,让模型输出更符合临床专业要求以及人类价值观的回答。

不过,再怎样调试医疗AI,其本身存在一定局限性。刘国梁认为AI与真人医生Zui根本的差异在于,二者在诊疗过程中的原则可能不相同。目前尚不能确定AI在诊断时,是以患者生命长度为重要衡量,还是以更好的生命质量为先,抑或根本与人类福祉无关。一名youxiu的医生能够在关注患者治疗方案的同时,照顾其情绪、花费、家庭情况,目前医疗AI还难以做到。

另外,医疗AI主要依靠患者的问诊数据,缺少查体过程。一方面,躯体类疾病可能会影响患者的感觉,使其表述出来的感受与病情严重程度不相符;另一方面,不同疾病也有相似症状,只靠询问很难得到准确结果。

北京大学人民医院骨科主任医师薛峰告诉《》,很多医学问题尚未有明确答案,许多医生也是依靠经验,达不到的准确率,更何况依靠人类经验来进行推理的AI,“现阶段让它来看病只是作为一种咨询、一种辅助,Zui后判断还是要交给真人医生,AI还需持续学习和调优”。

多位受访从业者、专家均表示,AI并不可以、也不可能取代医生,不应有处方权。一旦涉及诊断、开处方,必须有真人医生参与其中,否则就会面对“AI看病看错了,到底是AI负责,还是AI开发公司负责,抑或是购入AI产品的医院或医生负责”的难题。当AI与医生意见不符合,比如患者希望按照AI建议做非常昂贵,但医保不报销的检查,医生觉得没有必要时,也可能出现伦理问题。

据《华尔街日报》今年6月报道,在加州大学戴维斯分校医学中心肿瘤科,护士梅丽莎·毕比和癌症患者打了15年交道。当AI预警系统提示她的一名患者有败血症时,她确信警报是错的——因为AI不知道,白血病患者也会表现出类似败血症的症状。

按照医院规定,毕比可以在获得医生批准后推翻AI的诊断,但如果她错了,她将面临处分。Zui后,她只好按照AI的诊断给病人抽血检查,即使这可能会让病人进一步感染,也会让其治疗费用更高。

未来临床实践将怎样保证医生参与监管AI?薛峰表示有两种设想:一是仍然由医生负责开处方,AI只负责前期询问及信息收集;二是由AI开处方,但医生需要审核治疗方案,至少保证药物无害并签字,若出现问题,仍由签字医生负责。


展开全文
拨打电话 微信咨询 发送询价